Homework Set 10

$($ sect $6.1-6.4)$
Compute the quantities in questions 1 through 4 using the vectors below:

$$
\boldsymbol{u}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right], \quad \boldsymbol{w}=\left[\begin{array}{c}
3 \\
-1 \\
-5
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right]
$$

1. $\frac{1}{\boldsymbol{u} \cdot \boldsymbol{u}} \boldsymbol{u}$
2. $\left(\frac{x \cdot w}{x \cdot x}\right) x$
3. $\|x\|$
4. Find the distance between \boldsymbol{w} and \boldsymbol{x}.

For questions 5 and 6, find a unit vector in the direction of the given vector.
5. $\left[\begin{array}{c}-30 \\ 40\end{array}\right]$
6. $\left[\begin{array}{c}6 \\ -4 \\ -3\end{array}\right]$

For questions 7 through 10, determine which sets of vectors are orthogonal.
7. $\left[\begin{array}{c}8 \\ -5\end{array}\right],\left[\begin{array}{l}-2 \\ -3\end{array}\right]$
8. $\left[\begin{array}{c}12 \\ 3 \\ -5\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 3\end{array}\right]$
9. $\left[\begin{array}{c}-3 \\ 7 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -8 \\ 15 \\ -7\end{array}\right]$
10. $\left[\begin{array}{c}2 \\ -7 \\ -1\end{array}\right],\left[\begin{array}{c}-6 \\ -3 \\ 9\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]$

For questions 11 and 12 , show that $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ or $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{2} or \mathbb{R}^{3}, respectively. Then express \boldsymbol{x} as a linear combination of the \boldsymbol{u} 's

$$
\text { 11. } b_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], b_{2}=\left[\begin{array}{c}
-2 \\
6
\end{array}\right], x=\left[\begin{array}{c}
-6 \\
3
\end{array}\right]
$$

12. $\boldsymbol{b}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \boldsymbol{b}_{2}=\left[\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right], \boldsymbol{b}_{3}=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}8 \\ -4 \\ -3\end{array}\right]$
13. Determine if the set of vectors is orthonormal. If the set is only orthogonal, normalize the vector to produce an orthonormal set. $\left\{\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right],\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ 0\end{array}\right]\right\}$

For questions 14 and 15 , the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W .
14. $\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{c}5 \\ 6 \\ -7\end{array}\right]$
15. $\left[\begin{array}{c}2 \\ -5 \\ 1\end{array}\right],\left[\begin{array}{c}4 \\ -1 \\ 2\end{array}\right]\left[\begin{array}{c}2 \\ 1 \\ -3\end{array}\right]$

